Rescuing transient corticospinal terminations and promoting growth with corticospinal stimulation in kittens.
نویسندگان
چکیده
Development of corticospinal (CS) terminations is activity dependent. In the cat, activity-dependent refinement of termination topography occurs between weeks 3 and 6. Initially, sparse terminals are present in the gray matter bilaterally, including the motor nuclei. By week 6, virtually all motor nuclear terminations are eliminated, as are most ipsilateral terminations. In this study, we determined whether electrical stimulation of CS axons could be used to rescue transient terminations and promote their growth. We implanted microwires in the pyramid or spinal white matter to stimulate CS axons (2 hr/d, 330 Hz, 45 msec burst, 2 sec intervals) for 2-3 weeks during the refinement period. CS terminations were traced using wheat germ agglutinin conjugated to horseradish peroxidase. Animals were killed after week 6. Stimulation produced dense terminations bilaterally, including within the motor nuclei. Termination density was least in lamina 1 and ventral lamina 9. Reticular formation stimulation produced a control (i.e., nonstimulated) termination pattern. To determine whether CS stimulation affected development of the nonstimulated CS system, we traced terminations from the contralateral cortex using biotinylated dextran amine. Compared with controls or after reticular formation stimulation, there was a shift in the distribution of terminations of the nonstimulated side to more dorsal laminas, which is where the stimulated CS system had fewer terminals. This distribution shift is consistent with competition for termination space between the CS systems on both sides. Our findings indicate that activity can be harnessed to bias CS axon terminal development. This has important implications for using activity to modify motor system organization after perinatal CNS trauma.
منابع مشابه
Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade.
Motor development depends on forming specific connections between the corticospinal tract (CST) and the spinal cord. Blocking CST activity in kittens during the critical period for establishing connections with spinal motor circuits results in permanent impairments in connectivity and function. The changes in connections are consistent with the hypothesis that the inactive tract is less competi...
متن کاملThe corticospinal system: from development to motor control.
The corticospinal system is the principal motor system for controlling movements that require the greatest skill and flexibility. It is the last motor system to develop. The pattern of termination of corticospinal axons, as they grow into the spinal gray matter, bears little resemblance to the pattern later in development and in maturity. Refinement of corticospinal terminations occurs during a...
متن کاملNon-Invasive Brain Stimulation for Enhancement of Corticospinal Excitability and Motor Performance
During the past .. years, non-invasive .rain stimulation has .ecome an emerging .eld in clinical neuroscience due to its capability to transiently modulate corticospinal excitability, motor and cognitive functions. .hereas transcranial magnetic stimulation has .een used e.tensively since more than t.o decades ago as a potential .neuromodulator., transcranial current stimulation .tCS. has more r...
متن کاملCorticospinal Facilitation of Erector Spinae and Rectus Abdominis Muscles During Graded Voluntary Contractions is Task Speci.c: A Pilot Study on Healthy Individuals
Introduction: In this study we compared transcranial magnetic stimulation (TMS) elicited motor evoked potentials (MEPs) in a postural (bilateral low back extension: BLBE) and a respiratory (forced expiration during breath holding: FEBH) task.Methods: Using TMS of the left motor cortex, simultaneous patterns of corticospinal facilitation of the contralateral erector spinae (ES) and rectus abdomi...
متن کاملThe transition from development to motor control function in the corticospinal system.
During early postnatal development, corticospinal (CS) system stimulation, electrical or transcranial magnetic, is minimally effective in producing muscle contraction, despite having axon terminals that excite spinal neurons. Later, after stimulation becomes more effective, the cortical motor representation develops, and movements the system controls in maturity are expressed. We determined whe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 21 شماره
صفحات -
تاریخ انتشار 2004